MicroRNA-7 Control of β-Cell Replication
نویسندگان
چکیده
The study of the insulin-producing pancreatic b-cells transcends the realm of basic biology because of their importance for the maintenance of glucose homeostasis. As their autoimmunemediated destruction or the impairment of their function cause diabetes, the pursuit of strategies for b-cell replenishment and/or replication is a major objective of regenerative medicine. Owing to their slow turnover in humans, the pancreatic b-cells have been traditionally considered postmitotic (1). However, new evidence supports the notion that b-cells can dynamically adapt their mass and number. This is supported, for instance, by the observation of a perinatal burst of b-cell proliferation (2) or the fact that residual b-cells are found in type 1 diabetic patients decades after diagnosis (3). Although most factors behind this adaptation are pathological (e.g., obesity or hyperglycemia), others are physiological (e.g., pregnancy) (4). Animal models offer us a plethora of examples of b-cell regeneration associated with specific interventions, including duct ligation, b-cell ablation approaches, or partial pancreatectomy (4). In this issue of Diabetes, Wang et al. (5) describe the proliferation of b-cells induced by regulation of the mTOR pathway through microRNA-7 (miR-7). MicroRNAs (miRNAs) are noncoding gene products that posttranscriptionally regulate gene expression (6). miRNAs recognize and bind to partially complementary sequences on the RNA’s 39UTR, inhibiting its expression by translation repression or degradation. miR-7 is a representative islet miRNA (7), highly conserved across species and preferentially expressed in the human embryonic and the adult endocrine pancreas (8,9). The mechanistic target of rapamycin (mTOR) is a highly conserved serine/threonin protein kinase that controls cell proliferation and cell survival in response to a variety of cellular signals such as levels of energy, growth factors, nutrients, hypoxia, and stress (10). The mTOR signaling pathway has a critical role in metabolic diseases such as diabetes and cancer development (10). mTOR exists in two complexes, mTORC1 and mTORC2, both sharing the catalytic component but with different biological activities regulated by distinct scaffold proteins. Both complexes are sensitive to rapamycin, although mTORC2 is only affected by prolonged exposure (10). Several studies show that b-cell number, size, and/or physiology are affected by signaling from both mTOR pathways, which was also confirmed in a mouse pregnancy model with rapamycin (11). Constitutive activation of mTORC1 in mouse b-cells increased their number and size and correlated with decreased blood glucose levels and hyperinsulinemia. Conversely, deficiency in RPS6KB1 (S6K1), an mTORC1-dependent downstream kinase promoting protein synthesis, or the inhibition of mouse mTORC2 by deletion of the scaffold protein Rictor, produced the opposite effects (10). The mTOR pathway positively controls cell cycle progression and cell proliferation by regulating S6K1 and the eukaryotic translation initiation factor 4E binding protein (4E-BP1). Phosphorylation of 4E-BP1 by mTOR disrupts binding to eIF4E, activating cap-dependent translation. Both S6K1 and 4E-BP1/eIF4E pathways mediate mTORdependent G1 phase transition (12). Wang et al. (5) show that in vitro inhibition of miR-7a (the major murine isoform corresponding to human miR-7) in islets upregulates expression of mTORC1 components S6K1 and eIF4E, as well as the mTORC2-specific scaffold protein Mapkap1 (mSn1) and two downstream ERK threonine/serine protein kinases (MNK1/2), which phosphorylate eIF4E (13). This effect was detected only at the protein level, suggesting translational repression. In vitro targeting of reporter genes supported the specificity of this effect. Upregulation of S6K61, Mapkap1, and MNK1/2 was paralleled by an increase in phosphorylation of their respective substrate targets S6, Akt, and eIF4E. The increase in S6 and Akt phosphorylation, as well as elevated eIF4E protein levels, indicate a bona fide stimulation of the mTOR pathway activity. The biological significance of the MNK1/2-mediated increased phosphorylation of eIF4E, and its effect on translation is not completely understood (13). The activation of mTOR resulted in b-cell proliferation, confirmed by colocalization of insulin expression with replication markers. The effect was abrogated by the mTOR inhibitor rapamycin, substantiating the mTOR involvement and ruling out the possibility of other miR-7 targets controlling cell proliferation. The miRNA-mediated regulation of mTOR and the subsequent effect on cell proliferation has been studied mostly in the context of cancer. Several “tumor suppressor” miRNAs are known to target mTOR or its components, thus controlling cell cycle progression and proliferation (14–17). The role of miR-7 at inhibiting hepatocarcinoma by targeting the phosphoinositide 3-kinase catalytic subunit delta (PIK3CD), as well as mTOR and S6K1, has been recently proposed (18). Interestingly, Wang et al. (5) did not observe miR-7–mediated changes of mTOR expression at either the RNA level or the protein level. Collectively, these results indicate that miR-7 impedes b-cell replication via downregulation of the mTOR signaling pathway. This is the first study showing miRNA control of b-cell replication. From a basic biological perspective—and as discussed by the authors of the article—it is intriguing that miR-7– dependent mTOR activation may have conflicting functions in embryonic development and in mature cells. This is an observation that certainly warrants additional research. Given the unique therapeutic value of b-cells, it is important to understand the role of miRNAs in islet biology From the Diabetes Research Institute, University of Miami Leonard M. Miller School of Medicine, Miami, Florida. Corresponding author: Ricardo L. Pastori, [email protected]. DOI: 10.2337/db12-1518 2013 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by -nc-nd/3.0/ for details. See accompanying original article, p. 887.
منابع مشابه
TGF-β and Iron Differently Alter HBV Replication in Human Hepatocytes through TGF-β/BMP Signaling and Cellular MicroRNA Expression
The nature of host-virus interactions in hepatitis B virus infection is incompletely understood. Since soluble factors, e.g., cytokines and metals, may exacerbate liver injury in chronic hepatitis, we considered that defining the effects of receptor-mediated signaling upon viral replication will be significant. Consequently, we studied effects of iron or TGF-β-induced TGF-β/BMP signaling in the...
متن کاملMicroRNA-7 Regulates the mTOR Pathway and Proliferation in Adult Pancreatic β-Cells
Elucidating the mechanism underlying the poor proliferative capacity of adult pancreatic β-cells is critical to regenerative therapeutic approaches for diabetes. Here, we show that the microRNA (miR)-7/7ab family member miR-7a is enriched in mouse adult pancreatic islets compared with miR-7b. Remarkably, miR-7a targets five components of the mTOR signaling pathway. Further, inhibition of miR-7a...
متن کاملP-244: Analysis of Genomic and Cell Free DNA of A let-7 microRNA Binding Site of KRAS Gene Polymorphisms in Endometriosis
Background: Endometriosis is one of the most common benign gynecological diseases which is characterized by endometriallike tissue growing outside the uterine cavity. Although the pathology of endometriosis remains unknown, the genetic predisposition plays an apparent role. Several genes have been contributed to endometriosis, but it seems KRAS has a crucial role, because its activation results...
متن کاملCancer virotherapy: Targeting cancer cells by microRNA mechanism for selective replication of oncolytic viruses in these cells
Cancer, as one of the most serious public health problems, is the second-leading cause of death in the world after cardiovascular disease. The number of patients and the resulting mortality are increasing worldwide; therefore, early diagnosis, prevention, and effective treatment of cancer are very important. Current treatments such as chemotherapy and radiation therapy are often non-selective a...
متن کاملMicroRNA-7a regulates pancreatic β cell function.
Dysfunctional microRNA (miRNA) networks contribute to inappropriate responses following pathological stress and are the underlying cause of several disease conditions. In pancreatic β cells, miRNAs have been largely unstudied and little is known about how specific miRNAs regulate glucose-stimulated insulin secretion (GSIS) or impact the adaptation of β cell function to metabolic stress. In this...
متن کاملcAMP-Epac Pathway Stimulation Modulate Connexin-43 and MicroRNA-21 Expression in Glioma Cells
Introduction: Malignant astrocytic gliomas are the most common and lethal brain malignancies due to their refractory to the current therapies. Nowadays, molecular targeted therapy has attracted great attention in treatment of glioma. Connexin 43 (Cx43) and micro ribonucleic acid- 21(miR-21) are among molecules that are involved in glioma development and progression. These molecules showed...
متن کامل